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A compressible air-flow model is introduced for the thin film dynamics of a
highly rotating squeeze-film thrust bearing. The lubrication approximation to
the Navier–Stokes equations for compressible flow leads to a modified Reynolds
equation incorporating additional rotation effects. To investigate the dynamics of the
system, the axial position of the bearing stator is prescribed by a finite-amplitude
periodic forcing. The dynamics of the squeeze-film are modelled in the uncoupled
configuration where the axial position of the rotor is fixed. The coupled squeeze-film
bearing dynamics are investigated when the axial position of the rotor is modelled
as a spring-mass-damper system that responds to the film dynamics. Initially the
uncoupled squeeze-film dynamics are considered at low operating speeds with the
classical Reynolds equation for compressible flow. The limited value of the linearized
small-amplitude results is identified. Analytical results indicate that finite-amplitude
forcing needs to be considered to gain a complete understanding of the dynamics.
Using a Fourier spectral collocation numerical scheme, the periodic bearing force
is investigated as a nonlinear function of the frequency and amplitude of the stator
forcing. High-speed bearing operation is modelled using the modified Reynolds
equation. A steady-state analysis is used to identify the effect of rotation and the rotor
support properties in the coupled air-flow–structure model. The unsteady coupled
dynamics are computed numerically to determine how the rotor support structures
and the periodic stator forcing influence the system dynamics. The potential for
resonant rotor behaviour is identified through asymptotic and Fourier analysis of the
rotor motion for small-amplitude, low-frequency oscillations in the stator position
for key values of the rotor stiffness. Through the use of arclength continuation, the
existence of resonant behaviour is identified numerically for a range of operating
speeds and forcing frequencies. Changes in the minimum rotor–stator clearance
are presented as a function of the rotor stiffness to demonstrate the appearance of
resonance.
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1. Introduction

A squeeze-film bearing makes use of a thin gas film to separate a rotating disk
(rotor) from a coaxial stationary disk (stator) when subjected to imposed vertical
displacements. The application of gas film bearings has the potential to provide
improved bearing performance, particularly for high differential speed operation, in
comparison to classical bearing designs involving liquid lubrication at low speeds.

Current applications of gas film bearings include the small bearings required in
hard disk drives as reported by Witelski (1998), medium-scale industrial applications
in generators and small engines and large-scale applications in prototype gas turbine
aerospace engines as investigated by Malanoski & Waldron (1973).

Another technology that relies on air-film lubrication is the gas foil bearing. In such
a device, a secondary compliant foil face is used to improve bearing performance and
stability. Recent findings are reported by a number of authors, for example DellaCorte
& Valco (2000) investigate foil journal bearings. The journal configuration is given
extensive treatment by other authors, for example San Andrés & Kim (2009). Some
work in the thrust bearing geometry is reported by Heshmat, Xu & Heshmat (2000)
and Agrawal, Patel & Munson (2007) but most is focused on potential sealing
applications.

The demands of new technology require bearings that can operate at very
high rotational speeds, carry greater loads and maintain smaller clearances, as
highlighted by Munson & Pecht (1992). These strict operational requirements make
a comprehensive understanding of the air–rotor–stator dynamics vital. The current
study considers gas film lubrication in a highly rotating environment for a squeeze-
film thrust bearing configuration as the background to an investigation of other
gas-lubricated bearings.

Early theoretical work on air-lubricated systems was reported by Taylor & Saffman
(1957) in response to experimental results published by Popper & Reiner (1956), which
were used to suggest that non-Newtonian properties of air needed to be considered. In
this experiment, very large fluid pressures were observed in a system of two parallel
disks separated by a thin air film and experiencing relative rotational and axial
motion. By assuming the normal motion of one of the plates, Taylor and Saffman
used the lubrication equations for compressible flow to predict these high pressures.

The theoretical modelling of so-called squeeze-films was formalized by Langlois
(1962), where a classical Reynolds equation model was established to relate the
compressible film pressure and thickness. Langlois reported analytical solutions to
the squeeze-film problem in a number of general configurations including infinite
rectangular films and axisymmetric disks when the thickness of the film oscillated
periodically with a small amplitude. The latter of these solutions was an extension
of the work of Taylor & Saffman (1957) and identified that for small-amplitude
oscillations, the net force maintaining the disk separation (the squeeze-film force) is
also of a small amplitude.

Salbu (1964) investigated the squeeze-film separating a pair of parallel rotating
disks undergoing relative periodic motion in the axial direction. Using the theoretical
Reynolds equation approach of Langlois (1962), Salbu extended previous results by
modelling finite-amplitude disturbances. The corresponding experimental work on
squeeze-film thrust bearings provided good agreement with the theoretical work. For
large amplitudes, the pressure distribution exhibited peaks when the rotor–stator
clearance was minimized, resulting in a positive net axial force that provided a load-
carrying capacity for squeeze-film bearings. This feature is also observed by Stolarski
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& Chai (2006a), who conclude that the only way to generate a load-carrying force in
a thin air film without pressurization is through normal squeeze motion.

In contrast to the modelling of compressible air lubricating films, Parkins & Stanley
(1982) and Stolarski & Chai (2006a) both report results for an incompressible oil
film. Theoretical and experimental results show that, owing to the approximately
incompressible nature of oil, the generation of a positive film force is severely
restricted. Clearly, the load-carrying property of a squeeze-film is due to the
compressible nature of the air film that responds in a nonlinear manner to the periodic
normal forcing imposed on the system, a feature neglected by the linearized approach.
This conclusion is reinforced by Fourka, Tian & Bonis (1996), who employed a finite-
element computational scheme to solve the full nonlinear Reynolds equation in
parallel to corresponding analytical and experimental analyses. The primary focus of
the work was to investigate the stability of gas-lubricated bearings, but it was also
concluded that relevant models needed to include the nonlinear compressibility effects
in order to adequately predict the experimental results.

In many studies of gas squeeze-films, the air film between the bearing plates is
analysed when the motion of the plates is fully prescribed; however, a number of
authors consider the full problem of a structure–air-film coupling when the axial
position of the supported mass or rotor is unknown. Minikes & Bucher (2003) carried
out a detailed analysis of this coupled problem when a mass is levitated by squeeze-
film action generated by an oscillating piezoelectric disk. The coupled dynamics were
seen to be quite different to those predicted by the uncoupled analysis in the literature,
motivating the current study of both models.

The work of Hasegawa & Izuchi (1996) investigated how the load-carrying capacity
of an externally pressurized slider bearing was modified through the inclusion of air
film inertia. They carried out a dimensional analysis of the steady Navier–Stokes
equations for compressible flow that at leading order reduced to the steady lubrication
equations. Through a perturbation analysis, they showed that an increased load-
carrying capacity and enhanced bearing performance was predicted by the inclusion
of first-order inertia terms. Through the use of an average inertia approximation, a
modified Reynolds equation was formulated for squeeze-film action by Stolarski &
Chai (2008). The air film pressure distributions in a square geometry were found, and
when compared to their own previous results in the absence of inertia, Stolarski &
Chai (2006b) showed that inertia effects do not modify the load-carrying capacity.
Using an averaged inertia method, Brunetière & Tournerie (2006) investigated the
effect of inertia on the fluid flow within a hydrostatic seal. In this annular pressurized
geometry, it was shown numerically that the effect of inertia on the steady seal
clearance was small; however, the inertia effects significantly modified the leakage
from the seal. Their results are based on a comparison between the inertia model
and the inertialess model presented in full detail by Brunetière, Tournerie & Frêne
(2003a, b). In general, the results presented in the literature are varied; it appears
that the overall effect of inertia is determined by both the geometry in which the air
lubricating film is employed and the extent to which the axial, radial and azimuthal
components of the inertia contribute to the flow. This observation suggests that the
classical inertialess Reynolds equation will not be appropriate for every configuration
of thin lubricating films, so a case-by-case approach must be adopted.

The current study develops a modified Reynolds equation model for the squeeze-
film that incorporates the effect of radial inertia to provide results for highly
rotating configurations. By fully prescribing the rotor–stator motion, the modified
Reynolds equation is used to investigate the basic squeeze-film dynamics. The current
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Figure 1. Geometry of a squeeze-film thrust bearing in a dimensionless cylindrical
coordinate system (r, θ, z).

investigation extends the dynamics due to finite-amplitude oscillations to the limit of
low- and high-frequency oscillations in the bearing clearance.

To offer further insight into the full air–rotor–stator dynamics of a squeeze-film
bearing the modified Reynolds equation is employed to model the bearing dynamics
when the motion of the stator is fully prescribed and the rotor moves axially in
response to the dynamics of the film, subject to mechanical stiffness and damping
constraints. The current study sheds light on the film–structure coupling and the
influence of both the air film and bearing structure properties for a range of different
forcing amplitudes and frequencies and at a number of high operating speeds.

Numerical solutions to the periodic uncoupled and coupled squeeze-film bearing
problems can be obtained from a Fourier spectral collocation numerical scheme.
Additionally, using the method of arclength continuation, branches of solutions
provided by the spectral collocation scheme are tracked over the parameter space to
identify the bearing behaviour as a function of the modelling parameters, particularly
in the extremes of the parameter range where other methods fail. Details of the
numerical methods and their accuracy for both the uncoupled and coupled squeeze-
film bearing problems are given by Garratt et al. (2010).

The modified Reynolds equation approach to the modelling of air-lubricated
bearings in this study provides a background to the study of other similar devices
incorporating high-speed effects. The physical processes driving the dynamics are
expected to be common to a number of configurations and applications, for example
the use of air-riding films as alternative means for supporting a load and stabilizing the
behaviour of mechanical components; for example see Witelski (1998) and Munson
& Pecht (1992). Additionally, the oil-free operating environment is attractive to
those involved with the development of micro-turbomachinery and other precision
engineering systems.

2. Problem formulation
A squeeze-film thrust bearing is designed to carry a load in the direction normal to

the bearing plates with an air squeeze-film maintaining the rotor–stator separation.
Figure 1 shows a sketch of the geometry of a typical parallel plate squeeze-film
thrust bearing in a dimensionless cylindrical coordinate system (r, θ, z). The relative
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axial positions of the rotor and stator are hr (t) and hs(t), respectively, so that the
rotor–stator clearance is h = hr −hs . The rotor and stator are taken to remain parallel
and are in relative tangential motion, but a normal motion exists so that the rotor
moves axially relative to the stator. At the edge of the bearing, the air pressure is the
dimensionless ambient pressure pa .

To investigate the dynamics of the squeeze-film, the motion of the stator is
prescribed by a periodic oscillation

hs(t) = ε sin t, (2.1)

having a dimensionless amplitude of ε. The time scale of the problem has been chosen
as ω−1 (s), where ω (Hz) is the frequency of the forced oscillations and the units are in
parentheses. This forced motion represents mechanical vibrations and imperfections
in the operating environment that may act to destabilize the rotor–stator motion of
the bearing. To initially compare with the results in the literature, the rotor’s position
is fixed at the height of hr (t) = 1 so that the rotor–stator clearance becomes

h(t) = 1 − ε sin (t) . (2.2)

This expression for the rotor–stator clearance simplifies the analysis, but the results
of Minikes & Bucher (2003) and Brunetière, Tournerie & Frêne (2002) indicated that
such models provide only partial insight into the full air–rotor–stator dynamics.

To extend earlier models of squeeze-film bearing dynamics, a model for the rotor
behaviour is considered where rotor is free to move axially in response to the air flow
and where the rotor–stator clearance is given more generally by

h(t) = hr (t) − ε sin t. (2.3)

The axial rotor displacement is modelled as a spring-mass-damper system using
Newton’s second law and experiences a force due to the pressure within the air film
given in dimensionless variables by

d2hr

dt2
+ 2ζ

√
Sp

dhr

dt
+ Sp(hr − 1) = αF (t), (2.4a)

where ζ = D̂a/(2

√
mŜp) is the dimensionless damping ratio in terms of the dimensional

damping and stiffness parameters D̂a (N s m−1) and Ŝp (N m−1), respectively, and the
rotor mass m (kg). The natural frequency of the dimensional system is defined as

φ0 =

√
Ŝp/m (Hz) and it is noted that the dimensionless spring constant is the ratio

of the stator forcing frequency to the natural frequency of the dimensional system
Sp = (φ0/ω)2. The strength of the force coupling, incorporating the effect of the rotor
mass, is parameterized by α = (µU/mω2)(h3

0/R
3), where the dimensional bearing

radius is R (m). The dimensionless axial force due to the hydrodynamic pressure for
a squeeze-film bearing is

F (t) = 2π

∫ 1

0

(p − pa) r dr, (2.4b)

where pa is the dimensionless ambient pressure. For convenience, the equilibrium
height of the rotor has been chosen to incorporate the effect of the rotor mass so that
h0 = H − mg/Ŝp (m), where the equilibrium rotor position in the absence of gravity

and rotation is ĥr =H (m).
The governing equations for the air flow between the rotor and stator are the

Navier–Stokes equations for an isothermal compressible fluid. The relative importance
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of compressible flow characteristics is quantified by the Mach number. It is expected
that for exceptional combinations of the rotation speed and bearing width, the Mach
number could exceed one, indicating the importance of compressibility effects. More
generally, the Mach number will be small; however, Taylor & Saffman (1957) indicated
that compressibility effects are also significant when a thin layer of fluid is forced
into a small space. Their paper went further and confirmed that the compressible
flow model gives the best correspondence with experimental work in this field and
is followed by many later studies, for example Salbu (1964) and Stolarski & Chai
(2006a).

To characterize the relative importance of fluid inertia, it is useful to define the
radial and azimuthal Reynolds numbers as

ReU =
ρ0RU

µ
and ReΩ =

ρ0ΩR2

µ
, (2.5)

respectively. In the above, ρ0 (kg m−3) and U (m s−1) are a typical air density and
radial velocity, respectively. The dynamic viscosity of air is µ (bar s) and Ω (r.p.s.) is
the rotation rate for the rotor. A Reynolds number ratio is defined as

Re∗ =
ReΩ

ReU

=
ΩR

U
. (2.6)

Taking the equilibrium bearing clearance h0 (m) and the radius of the rotor R (m)
as typical vertical and radial length scales, a bearing aspect ratio is defined as

δ0 =
h0

R
. (2.7)

In the operation of a squeeze-film bearing typically the rotor–stator clearance is very
small relative to the radius of the disks so that δ0 � 1.

Classical lubrication theory neglects the effects of fluid inertia by requiring a small
reduced Reynolds number. However, for bearings operating at very high speeds of
rotation, the centrifugal inertia term will not necessarily be negligible.

A viscous pressure scale is employed and the leading-order terms in the compressible
flow Navier–Stokes momentum equations are retained. Applying no-slip velocity
boundary conditions, the radial and azimuthal velocities are then readily found, and
these velocities and the continuity equation are integrated across the film thickness.
Applying the rigid-surface conditions to this expression yields the axisymmetric
modified Reynolds equation

σ
∂

∂t
(ph) − h3

12r

∂

∂r

(
pr

∂p

∂r

)
+

λ

40K

h3

r

∂

∂r

(
r2p2

)
= 0, (2.8)

where σ = Rω/U is the squeeze number.
The formulation of (2.8) from an asymptotic analysis is provided in the Appendix.

The parameter λ=ReUδ2
0Re∗2 quantifies the effect of flow inertia because of high-

speed rotation. The fluid density relative to the pressure is characterized by the
modified gas constant K = (ρ0kbτh2

0)/(µmaRU ), where kb (J K−1) is the Boltzmann
constant, ma (kg) is the mass of air and τ (K) is the fluid temperature.

Neglecting edge effects, the squeeze-film is subject to a constant ambient pressure
pa at the periphery of the bearing structure so that

p = pa at r = 1. (2.9a)
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In this axisymmetric model, a pressure symmetry condition is applied at the origin,
requiring that

∂p

∂r
= 0 at r = 0. (2.9b)

The modified Reynolds equation (2.8) expresses the relationship between the fluid
pressure p(r, t) and the film thickness h(t). The equation differs from the classical
Reynolds equation for compressible flow through the inclusion of an additional term
parameterized by λ. The case when λ= 0 corresponds to low-speed operation with
the classical Reynolds equation, reported by Langlois (1962) and Gross (1980) for
example. A non-zero speed parameter introduces centrifugal inertia effects into the
squeeze-film bearing problem. Such high-speed cases have been considered before but
in this study their effects are combined with those arising from air compressibility,
finite-amplitude forcing and coupled rotor motion.

When the rotor–stator clearance is fully prescribed by (2.2), the modified Reynolds
equation (2.8) is solved subject to conditions (2.9), which together comprise
the uncoupled problem for periodic squeeze-film dynamics in a highly rotating
environment. In the configuration where the rotor motion is not fixed, the film
pressure and thickness are related by the modified Reynolds equation (2.8), subject
to conditions (2.9), and requires the simultaneous solution of (2.8) and (2.4). This
system makes up the coupled problem for the periodic air–rotor–stator dynamics of
a squeeze-film bearing with high-speed rotation.

3. Uncoupled dynamics at low operating speeds (λ= 0)
In the first instance, taking λ= 0 the modified Reynolds equation (2.8) reduces

to the classical Reynolds equation. Taylor & Saffman (1957) report a leading-order
asymptotic solution using Bessel functions for the pressure distribution within a
squeeze-film for a small-amplitude forced motion given by (2.2). In the operation
of squeeze-film bearings, a crucial aspect of the design concerns its load-carrying
ability. After extensive calculations, Langlois (1962) found a closed-form expression
for the force on the bearing surface in the large squeeze number limit. To evaluate the
load-bearing capacity for more general squeeze numbers, the small-amplitude result
of Taylor & Saffman (1957) can be numerically integrated over the rotor surface
using a composite trapezium rule. It can be observed that for this small-amplitude
case, the force profiles are sinusoidal and become in-phase with the stator motion
for large squeeze numbers. Crucially, it is noted that the average force is zero for all
small-amplitude forcing.

3.1. Low-frequency stator oscillations, σ � 1

Solving the Reynolds equation with σ � 1, an asymptotic pressure distribution to
first order is

p(r, t) = pa + σ
3ε cos t

(1 − ε sin t)3
(
1 − r2

)
+ O

(
σ 2

)
∝ −dh

dt

1

h3
. (3.1)

Integrating the pressure distribution (3.1) over the surface of the rotor relative to
the ambient pressure gives the corresponding force on the rotor as

F (t) =
3πσε cos t

2 (1 − ε sin t)3
+ O

(
σ 2

)
. (3.2)
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Figure 2. Force profiles from low-frequency (σ � 1) asymptotics; σ = 0.1 and pa = 1.

This load-carrying force is in-phase with the speed of the rotor–stator oscillations
dh/dt = − ε cos t . This observation was made by Salbu (1964) and identified as
viscous damping behaviour. Figure 2 shows the force profiles and the rotor–stator
clearance profiles for increasing forcing amplitudes of 0 � ε � 0.5 and 0.5 � ε � 0.9
in figures 2(a) and 2(b), respectively. Despite the presence of large-amplitude peaks
in the force the average force over one period of oscillation is zero. It is suggested
that in this low-frequency case, the speed of compression is small, resulting in the air
being driven out of the bearing rather than in the compression of the air, even in the
case of large-amplitude forcing.

3.2. High-frequency stator oscillations, σ � 1

Taking the large squeeze number limit σ � 1, i.e. high-frequency plate oscillations, the
leading-order inner solution within a singular perturbation analysis of the Reynolds
equation is given by

p =
C

h(t)
+ O

(
1

σ

)
, (3.3)

for a constant C. This is the so-called ‘Ph solution’; however, this pressure field
does not satisfy the peripheral boundary condition (2.9a) and suggests that an
outer boundary-layer solution exists. Defining the boundary-layer variable x by
r = 1 − (1/

√
12σ )x, the Reynolds equation becomes

∂

∂t
(ph) − h3 ∂

∂x

(
p

∂p

∂x

)
+ O

(
1√
σ

)
= 0. (3.4)

For small-amplitude oscillations (ε � 1), the outer solution resulting from (3.4) is
given by

p = pa

(
1 − ε sin(t)

(
exp(−

√
(6σ/pa) (1 − r)) cos

(√
6σ

pa

(1 − r)

)
− 1

)

+ ε cos(t)

(
exp(−

√
(6σ/pa) (1 − r)) sin

(√
6σ

pa

(1 − r)

)))
+ O

(
ε2,

ε√
σ

)
.

(3.5)

The matching of (3.3) and (3.5) requires that C =pa . This pressure distribution is
presented in figure 3 at a number of points in the time period and shows a radially
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Figure 3. High-frequency (σ � 1) asymptotic pressure distribution; σ = 100, pa =1 and
ε = 0.1.

uniform pressure in the bulk and a rapidly changing nonlinear pressure in the
boundary layer.

The periodic bearing force arising because of this asymptotic pressure distribution is

F (t) = επ sin t + O

(
ε2,

ε√
σ

)
, (3.6)

giving an average force of zero in this small-amplitude case. This result demonstrates
that a load-carrying ability cannot be generated by a high-frequency small-amplitude
stator oscillation alone, suggesting that a significant degree of fluid compression
must occur before a load-carrying force is generated.

3.3. Squeeze-film dynamics due to finite-amplitude forcing

Salbu (1964) presented some finite-amplitude forcing solutions to the Reynolds
equation; however, limitations in the numerical scheme employed did not allow a
complete investigation of finite-amplitude effects over a range of squeeze numbers. To
investigate the effect of finite-amplitude forcing in the current study for more general
frequencies of oscillation, the dynamics of the system are computed using a Fourier
spectral collocation scheme.

Figure 4(a) shows the numerical force profiles corresponding to a large-amplitude
forcing ε = 0.9 for a range of squeeze numbers. Through increasing the squeeze
number the force profile displays an asymmetric peak generated by the compression
of the film at the point when the rotor–stator clearance is least.

To characterize the relationship between the load-carrying ability and the film
compression, (3.3) with C =pa is used to approximate the pressure throughout
the bearing for larger-amplitude oscillations with large squeeze numbers. The
corresponding leading-order axial force is

F (t) = πpa

(
1 − h(t)

h(t)

)
+ O

(
1

σ

)
= πpa

(
ε sin t

1 − ε sin t

)
+ O

(
1

σ

)
. (3.7)

This force is shown in figure 4(b) for a range of stator oscillation amplitudes.
The approximate Boyle’s law force profile in figure 4(b) for ε = 0.9 underpredicts

the numerically computed profile shown in figure 4(a) for σ = 20 at t = 0 despite
showing qualitative agreement with the shape of the profiles. This difference arises
because the spectral collocation scheme requires a periodic solution and allows a
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Figure 4. Force profiles: (a) numerical solutions; (b) Boyle’s pressure law force, σ � 1
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super-ambient pressure at t =0. For the analytical pressure in (3.3), C =pa , so that
at t = 0 the pressure is only atmospheric. This difference causes an underprediction
of the average squeeze-film force.

Despite quantitative differences between the results computed numerically and
those predicted by Boyle’s law, the profiles in each case display similarities that aid
the classification of squeeze-film dynamics. Typically, Boyle’s law is used to model
the compression of air in a closed cylinder where the mass of air within the cylinder
remains constant and the flow is driven by the compression of the air from above or
below. The characteristics of Boyle’s law observed in the numerically computed cases
indicate that for high-frequency stator oscillations, the air is compressed at such a rate
that there is no time for the air to overcome the viscous forces opposing the outwards
flow and thus the majority of the air remains within the bearing and undergoes
significant compression, a result corroborated by Salbu (1964). This compression
creates an asymmetric force profile and generates a load-carrying force. To quantify
this behaviour the average force F̄ is plotted in figure 5 as a function of the forcing
amplitude and for a range of squeeze numbers. The results in this figure indicate
how a combination of large-amplitude and high-frequency oscillations can be used
to develop a load-carrying force through squeeze-film action.

4. Uncoupled dynamics at high operating speeds (λ> 0)
The effect of fluid inertia in air lubricated systems for selected geometries is

presented by a number of authors including Brunetière & Tournerie (2006) and
Stolarski & Chai (2008). Results suggest that the influence of inertia is not always
significant and is typically dependent on the geometry of the specific configuration.
The effect of inertia in a squeeze-film bearing remains unreported, motivating an
investigation of a modified Reynolds equation (2.8) incorporating centrifugal inertia
effects arising because of high-speed rotation.

The initial analysis of the high-speed squeeze-film considers the steady-state problem
from (2.8). It can be shown that for non-zero values of the speed parameter, the
steady air pressure within the bearing is less than atmospheric throughout and is at
a minimum at the centre of the bearing.

The corresponding steady force is

F = πpa

(
20K

3λ

(
1 − e−3λ/20K

)
− 1

)
. (4.1)
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The interior sub-ambient pressure produces a negative force acting on the rotor that
attempts to draw the rotor closer to the stator. Additionally, for increasing values
of the speed parameter, the force tends towards a maximum negative limit value of
−πpa .

To compute solutions to the full unsteady problem, a Fourier spectral collocation
numerical scheme is employed. To characterize the basic effect of inertia, the time-
averaged force F̄ is shown in figure 6 for a range of speed parameter values λ and for
selected oscillation amplitudes of ε = 0.1, 0.3, 0.5, 0.7 and 0.9, and the force predicted
by the steady solution is included for comparison. Each of the results shows that high-
speed rotation reduces the force; on the other hand, the effect of increased oscillation
amplitude is increased force, and the results for a large-amplitude oscillation (ε =0.9)
show the potential for a positive average force for sufficiently low speeds of rotation.
The positive values of the force indicate that the squeeze-film compressibility force
exceeds the suction force caused by rotation.

To observe the effect of higher-frequency oscillations within this high-speed regime,
the time-averaged force within the bearing was computed numerically for a range
of squeeze numbers and speed parameters. For small-amplitude oscillations ε = 0.1,
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the average squeeze-film force is insensitive to changes in the squeeze number and
decreases uniformly with increasing speed parameter, as predicted in the steady-
state analysis discussed above. The contours of the time-averaged force for a finite-
amplitude oscillation ε = 0.9 are shown in figure 7, and the effect of varying the
squeeze number is seen to be significant. For the smallest values of the squeeze
number, the film force is negative for all non-zero rotation speeds; however, increased
values of the squeeze number cause an increased average force. This increase in
average force produces a significant region in the parameter space where a positive
film force is generated. This force arises because of the high frequency (large squeeze
number) and large amplitude of the oscillations and is attributed to the increased
energy being applied to the system through the repeated compression of the air film
that generates the squeeze-film compressibility force.

The complexity of figure 7 demonstrates the importance of considering large-
amplitude oscillations when considering the dynamics of squeeze-films. It is only
in this regime that the nonlinear aspects of this problem become significant and
the dynamics of the flow become sensitive to variations in the physical parameters,
features that are not apparent from linearized results in this area. A full understanding
of the dynamics in this operating regime is critical to the successful operation of air-
lubricated devices.

5. Coupled bearing dynamics
The full air–rotor–stator dynamics of a squeeze-film bearing are now modelled

when the axial motion of the stator is prescribed and the film dynamics drive the
coupled rotor motion. The axial position of the forced stator motion is taken as
hs(t) = ε sin t , and the subsequent rotor position hr (t) gives the rotor–stator clearance
to be h(t) = hr (t) − ε sin t .

5.1. Steady-state coupled behaviour

In a steady state hs = 0 and the steady force F is given by (4.1), then from (2.4) the
rotor position becomes

hr (λ) = 1 − απpa

Sp

(
1 − 20K

3λ

(
1 − e−3λ/20K

))
for λ> 0. (5.1)
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α = 1.

In all cases, an increased rate of rotation decreases the rotor height whilst increased
rotor stiffness Sp reduces the set-down of the rotor. For high values of the speed
parameter, the rotor set-down position tends towards a finite limit of 1 − (απpa/Sp),
depending on both the stiffness of the rotor support and the coupling parameter.

5.2. Unsteady coupled dynamics

5.2.1. Effect of forcing amplitude and frequency

Solutions to the unsteady problem are computed for a number of amplitudes
of stator oscillation ε using a Fourier spectral collocation method. From these
numerical results the time-averaged rotor position over one period can be computed
numerically using the trapezium rule. This average position is modified by both the
speed parameter and the forcing frequency, most significantly for finite amplitudes of
stator forcing in a manner analogous to the behaviour shown for the average force
in figure 7.

To gain a full understanding of the bearing dynamics, the unsteady force and rotor
position profiles are considered. Examples of solutions to the modified Reynolds
equation (2.8) and the rotor position equation (2.4) are given for a number of
values of the squeeze number. Figures 8(a) and 8(b) show results for a large-
amplitude oscillation ε = 0.9 in the inertialess case λ= 0 and the high-speed case
λ=10, respectively.

The force and rotor position profiles in figure 8 display significant asymmetric
peaks at the point of greatest stator height and maximum film compression. At the
same point in time, the rotor position undergoes a large deflection away from the
stator because of the increased force acting on the rotor due to the film compression.
In both figures it is seen that increased values of the squeeze number result in forces
of a greater magnitude and correspondingly a greater degree of rotor deflection.
Comparing the two figures it is clear that the high-speed rotation induces a damping
force within the system that lessens the magnitude of the maxima and minima of the
profiles in the high-speed case. Additionally, for the high-speed rotation in figure 8(b),
a negative force is seen over the whole period in the small squeeze number case
σ = 0.01, resulting in a rotor position less than the equilibrium position. Importantly,
it is noted that for the higher-frequency stator oscillations with λ= 10, there is a
balance between the negative forces that are generated because of high operating
speeds and the positive ‘squeeze’ force due to the compression of the air film.
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5.2.2. Effect of rotor support properties

The dynamics of the rotor are moderated by the properties of the rotor support
structures, the damping ratio ζ , spring stiffness Sp and the coupling parameter α.
These parameters are now considered in greater detail to investigate more completely
the role they play in determining the bearing dynamics.

Figure 9 shows the force and rotor position profiles plotted for one period of
oscillation and for a selected range of spring stiffnesses. These figures correspond to
the inertialess case λ=0 and the high-speed case λ=10, respectively. For the smallest
stiffness considered in figure 9(a) at t = π/2, the rotor motion displays the greatest
deflection from the initial equilibrium rotor position of unity. This deflection decreases
for the increased stiffness values of Sp = 100 and 150 by increasing the resistance of the
rotor to axial motion due to film compression. The force profiles shown in figure 9(a)
show the opposite behaviour to the rotor because the largest force is generated when
the stiffness is greatest and the rotor deflection is most restricted. This produces a
smaller minimum clearance than for the low stiffness case and brings about a greater
degree of film compression and force generation.

In figure 9(b) the rotor position and force profiles are shown for the high-speed
rotation case λ=10. The trends observed in the low-speed case are displayed; however,
the response of the rotor is modified. The maximum deflection occurring at t = π/2
is seen in the low stiffness case Sp = 50, but for most of the time the low stiffness
case shows a significant decrease in the rotor position in comparison to the medium
and large stiffness results. This behaviour is attributed to the high-speed rotation
that modifies the rotor position when there is only a small restoring spring force.
Increasing stiffnesses would maintain the rotor close to the equilibrium position and
reduce the downwards motion because of the high-speed rotation.

The effect of mechanical damping is displayed in figure 10 with a comparison of
the results for three values of the damping ratio ζ in the case of large-amplitude
oscillations (ε =0.9). In the undamped case (ζ =0), the rotor height reaches maximum
amplitude at the point of maximum stator height, and correspondingly the film force is
least. For increased values of the damping ratio, the amplitude of the rotor deflection
is reduced and the film force increases. Additionally, the increased levels of damping
cause a phase shift between the rotor and stator motion. Typically, for a damping
ratio less than unity, such a system should display oscillations of a frequency

√
Sp .
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However, owing to the periodic forcing, such undamped oscillations do not exist for
non-integer values of

√
Sp . Furthermore, the damping properties of the coupled air

flow may damp out any oscillations appearing in the rotor height.
The results in figures 9(a), 9(b) and 10 demonstrate the significance of the coupled

rotor–structure model, particularly for large-amplitude forcing. The behaviour is
investigated further by analysing how the coupling parameter α changes the air–
rotor–stator dynamics in both the small- and large-amplitude regimes typified by
ε = 0.1 and 0.9.

Increased values of the coupling parameter, corresponding to a reduced rotor mass,
increase the amplitude of the rotor motion shown in figure 11(a). Additionally, in the
large-amplitude case in figure 11(b), increasing the coupling parameter reduces the
force profile. As the amplitude of stator oscillation is increased, the changes in the
coupling parameter bring about significant changes in the force profile as well as
the rotor position.
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5.3. Identification of resonant dynamics

In the current squeeze-film bearing analysis, a forced oscillatory stator motion has
been modelled to represent a vibration acting on the system. The potential for
resonance due to this forced vibration is now considered.

5.3.1. Analysis for small-amplitude, low-frequency forcing

For low-frequency oscillations in the stator position (σ � 1), an asymptotic solution
for the no-inertia case (λ= 0) was given by (3.1). In this case, the dynamics of the air
flow become uncoupled from the rotor motion, so this pressure remains valid in the
coupled model.

The axial rotor displacement hr in the absence of damping (ζ = 0) and satisfying
(2.4) for small amplitudes of stator displacement (ε � 1) is given by the fourth-order
expansion

hr ∼ 1 + εσ
3πα cos t

2
(
Sp − 1

) + ε2σ
9πα cos t

2
(
Sp − 4

) sin t

+ε3σ
9πα cos t(

Sp − 9
) (

Sp − 1
) ((

Sp − 1
)
sin2 t − 2

)
+ε4σ

15πα cos t(
Sp − 16

) (
Sp − 4

) ((
Sp − 4

)
sin3 t − sin t

)
. (5.2)

This expression becomes singular for Sp = 1, 4, 9, 16 because of the emergence
of a higher-order term that restricts the validity of the expansion. Each additional
term corresponds to higher-order terms that increase in frequency with the order of
the term. To gain further insight into the presence of these singular dynamics, an
approximate Fourier series analysis is conducted by expressing the force in terms
of Fourier coefficients F̂k so that F (t) =

∑
k eikt F̂k . Writing the rotor position as a

Fourier expansion hr (t) = 1 +
∑

k eikt ĥk , it can be shown that the Fourier coefficients
of the rotor position are related to the force Fourier coefficients through (2.4) to give

ĥk = A(k)eiγ (k)F̂k. (5.3)

In (5.3), the amplitude and phase shift are determined as

A(k) =
α√(

Sp − k2
)2

+ 4ζ 2Sp

and γ (k) = − tan−1

(
2ζ

√
Spk(

Sp − k2
)
)

. (5.4)

In the absence of damping it is noted that the phase difference is zero, indicating
that the rotor motion and force are in phase. Furthermore, the amplitude of the
modified rotor position becomes singular if Sp = k2, provided that the amplitude
of the corresponding force Fourier coefficient and the coupling parameter are both
non-zero. This behaviour corresponds with the trend observed using the asymptotic
series analysis and indicates that in the undamped case, the k =

√
Spth mode will be

excited and tend to dominate. Figure 12(a) shows a plot of the undamped (ζ = 0)
amplitude A(k) for a number of Fourier modes as a function of the spring stiffness
and figure 12(b) is the corresponding case when the oscillations are damped (ζ > 0).
Comparing these figures it is seen that damping bounds the amplitude so that for
Sp = k2 the kth mode remains finite and also reduces the overall amplitude of the
Fourier modes.

Additionally, damping brings about a phase shift given by (5.4) between the force
and the rotor dynamics. From the nature of this expression, it is noted that a phase
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Figure 12. Approximate Fourier amplitude; α = 1.

shift only appears because of damping, but the phase becomes singular for square
values of the spring constant. Finally, it is observed that by decreasing the coupling
parameter the amplitude of the rotor oscillations decreases, and in the case of zero
coupling the rotor position remains at the equilibrium position because no forcing is
applied to the system.

The use of this approximate Fourier analysis is restricted because the coupling of
the force profile to the rotor position through the modified Reynolds equation is
neglected. To incorporate the full coupled dynamics and the nonlinear behaviour due
to large-amplitude disturbances, a full nonlinear numerical analysis is required.

5.3.2. Numerical analysis for large-amplitude forcing

Earlier results indicated that the most crucial bearing dynamics occur in the full
nonlinear regime when the rotor–stator clearance becomes very small because of large-
amplitude stator oscillations. The air–rotor–stator dynamics in this highly nonlinear
case require detailed investigation because bearing failure due to rotor–stator contact
is more likely to occur when the rotor–stator clearance is already reduced because of
large-amplitude stator displacements. To observe the importance of nonlinear effects
at the points where singular rotor dynamics occur, numerical solutions are computed
for a range of different amplitude stator oscillations 0.1 � ε � 0.9. In the illustrative
example considered, the spring constant is Sp =49 and initially mechanical damping
was included ζ = 1.

In a classical non-forced system, the value of ζ =1 represents the point of critical
damping: for values smaller or larger than one, the system will show oscillatory
dynamics or monotonic damping, respectively. In the case of a forced system, such as
the one considered here, it is possible to add to the transient behaviour of the system
a solution of the corresponding non-forced system which sooner or later dies out.
However, the forced solution does not die out, because it is driven by the loading
force. In our case, we are looking at periodic solutions of the forced system where
any transient (non-periodic) response has completely died out.

Figure 13(a) shows how the periodic rotor position profile increases for increasing
amplitudes of stator oscillation ε. The stator is closest to the rotor at approximately
t = π/2. For small amplitudes, the rotor displays an approximately uniform position
and that only with ε � 0.7 does the rotor position show significant displacements and
is forced away from the approaching stator. Additional computations show this as a
general feature for solutions at non-square values of the spring constant. However, on



A compressible flow model for the dynamics of squeeze-film thrust bearings 463

0.978

0.980

0.982

0.984

0.986

0.988

0.990

hr (t)

t t

ε = 0.1
ε = 0.3
ε = 0.5
ε = 0.7
ε = 0.9

0.95

0.96

0.97

0.98

0.99

1.00

1.01

0 π 2π 0 π 2π

ε = 0.1
ε = 0.3
ε = 0.5
ε = 0.7
ε = 0.9

(a)  ζ = 1 (b)  ζ = 0

3π/2π/2 3π/2π/2

Figure 13. Numerical rotor position profiles; σ = 0.001, λ= 5, Sp = 49 and α =1.

the basis of the above analysis, it is expected that the rotor would display oscillations
with a frequency of k = 7 for a stiffness of Sp = 49; however, in this case the higher-
frequency oscillation is not present, indicating that the critical level of mechanical
damping on the rotor has damped out the additional oscillation and constrained the
motion.

The rotor position profile in the undamped case (ζ =0) in figure 13(b) displays
a number of oscillations at a higher frequency than the forced stator motion
superimposed upon the basic motion in figure 13(a). The additional component of
the motion arises because of the excitation of the seventh Fourier mode, matching the
predicted frequency of this oscillation. The figure shows that the nonlinear behaviour
observed becomes significant for large-amplitude oscillations in the stator position
having ε > 0.7.

To observe the appearance of resonant dynamics more generally, the Fourier
spectral collocation numerical scheme was used to compute the rotor dynamics at
successive integer values of the spring constant. Figures 14(a) and 14(b) show the
absolute value of the Fourier mode amplitudes for relevant modes plotted as a
function of the spring constant for ε =0.5 and ε = 0.9. In both figures, it is noticeable
that peaks in the magnitude of the kth Fourier coefficient appear when Sp = k2 and for
stiffnesses away from a square number the amplitude decreases rapidly. Figure 14(b)
also shows a number of secondary disturbances and peaks in the amplitude function
even for spring constants far from the resonant value. The asymptotic expression for
the rotor position given by (5.2) shows peaks in nearby modes that share a factor
in the denominator of (Sp − k2). It is expected that the secondary behaviour seen in
figure 14(b) is the result of similar characteristics in the full solution. The restricted
nature of all the peaks in this undamped case is due to the bearing air flow imparting
a damping force in the rotor through the forcing term that acts to stabilize the
high-frequency rotor dynamics. To understand the appearance of resonant behaviour,
it is noted that because the dimensionless stiffness parameter is Sp = (φ0/ω)2, integer

values of
√

Sp correspond to the rotor system having a natural frequency φ0 that is
an integer multiple of the forcing frequency ω, leading to resonant rotor behaviour.

The appearance of resonance in a mechanical system is undesirable because of the
potential generation of unpredictable and destabilizing behaviour. Through the use
of an arclength continuation method, the characteristics of a squeeze-film bearing are
investigated in more detail to identify the effect of resonance.
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A crucial feature of air-lubricated technology is that the bearing separation should
be maintained. This requirement prompts the use of the minimum rotor–stator
clearance as a characteristic measure of the solution dynamics. Figure 15 shows the
minimum rotor–stator clearance plotted over a range of spring constants for several
values of the squeeze number. The very low-frequency stator oscillation (σ = 0.0001)
produces minimal film damping, and consequently a localized peak in the clearance
is seen at each resonant point. For all non-resonant values, the minimum clearance
uniformly reduces for reduced stiffness so that min(hr ) < 0.1, the minimum clearance
for a fixed rotor and a prescribed stator oscillation having amplitude ε = 0.9. The
reduced clearance is a result of the rotation drawing the rotor towards the stator.

For increased frequencies of oscillation, the minimum clearance increases as a
larger squeeze-film force is developed that balances the effect of high-speed rotation.
Interestingly, for these higher frequencies, it would be expected that the film displays
increased damping characteristics to smooth out the resonant peaks; however, the
resonant behaviour is still observed but reduces the clearance for the higher-frequency
oscillations, a feature undesirable in bearing operation. Furthermore, the points
where resonant peaks and troughs are observed are detuned for higher oscillation
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frequencies so that they no longer occur for square values of the stiffness. Looking
at the distribution of the troughs in the minimum clearance curve indicates that their
distribution along the curve remains the same as previous results for σ � 1 but with
a shift to smaller values of Sp , indicating that higher-frequency oscillations generate
a degree of stiffness in the film.

To compare the bearing dynamics at different speeds of operation, results are shown
in figure 16 for λ=0, 5 and 10. The behaviour seen follows the results discussed above
with a peak at each of the resonant values and then a trough, before increasing to
the next resonant peak. It is noted that as the speed number increases, the minimum
clearance decreases because of high-speed rotation. Additionally, the results show that
for increased rotation speeds there is a critical resonant value that, for stiffnesses less
than this value, leads the minimum clearance to tend to zero. For a further reduction
in stiffness, no solution is found, showing that for this rotor stiffness the effect of
high-speed rotation is not balanced and allows rotor–stator contact to occur.

The results computed using the arclength continuation method show generally
smooth behaviour for non-resonant values of the spring constant. However, for
values near a resonant value, the minimum clearance plots show a number of
locations that are non-smooth. One of the characteristic features of the method
of arclength continuation is that the solutions computed along a selected branch of
solutions vary smoothly between steps. However, in this case the selected solution
measure has non-smooth behaviour because the minimum clearance is determined by
locating the critical point of the rotor–stator clearance. For a fixed rotor, the critical
time point in a given period would always be t = π/2 due to the sinusoidal stator
motion. However, if the position of the rotor varies, then this minimum can occur
at a different location in the period. To explore this, the critical time point for the
minimum clearance within a period is numerically identified for solutions from the
arclength continuation numerical solver.

In figure 17 the continuous curve and the left-hand axis show the minimum
clearance, and the thick discontinuous curve and the right-hand axis show the
value of the critical time point t∗ that corresponds to the minimum clearance
calculated. For those points with non-resonant spring constants, the critical time
value is approximately t∗ = π/2. However, close to resonant values the critical
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time displays discontinuous behaviour, corresponding to the non-smooth points in
the clearance curve. As the spring constant is reduced to near a resonant value, the
critical time switches to later times in the period. However, when the spring constant
is reduced past the resonant value, then the critical time value suddenly jumps again.
After this jump, the critical time is significantly less than the original value of t∗ = π/2,
but as the stiffness is further reduced the critical value steps upwards to the original
value.

Figure 18 shows similar features in the results for a higher-frequency stator
oscillation, leading to more non-smooth points on the clearance curve, particularly
for small stiffness values. This analysis confirms that the non-smooth behaviour of
the minimum rotor–stator clearance is the result of discontinuities in the critical time
point at which the minimum occurs and not due to numerical error.

To more clearly observe the discontinuous behaviour outlined above, figures 19–20
show the force–rotor–stator dynamics plotted for four different spring constants shown
in figure 17 close to Sp = 36 computed using the method of arclength continuation.
On the rotor and stator curves, the vertical line indicates the location of the critical
time point within the period.

In figure 19(a), the rotor position shows a small-amplitude oscillation with an
approximate frequency of six. For a slightly smaller spring constant, the results in
figure 19(b) show that the critical time point has increased, resulting in the minimum
clearance occurring later in the period. This minimum value corresponds to the stator
being at almost maximum height and the critical time point being to the right-
hand side of the second high-frequency rotor oscillation. Comparing this result with
figure 20(a), where Sp < 36, it can be seen that the critical time point now occurs
on the left-hand side of the second oscillation and also occurs before the maximum
stator height is attained. There is no continuous transition from the location of the
minimum clearance in these two cases. This result reinforces the understanding of
the discontinuous behaviour seen in the critical time curve in figure 17 at each of
the resonant spring constants. Examining figure 20(b) for a further reduced spring
constant, it is seen that the critical time value has increased before eventually returning
to t∗ = π/2.
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6. Summary and conclusions
A modified Reynolds equation model was introduced to simulate squeeze-film

bearing dynamics with high-speed operation. The dynamics of two problems were
modelled when the bearing stator is subject to a prescribed periodic oscillation,
which is representative of physical disturbances. The first was the uncoupled problem
of calculating the squeeze-film dynamics when the axial position of the rotor was
fixed. The second problem was to determine the full air–rotor–stator behaviour when
a forced spring-mass-damper model was used to model the coupled rotor motion

Initially the uncoupled squeeze-film dynamics were considered at low operating
speeds. The asymptotic and analytical results for small-amplitude disturbances
demonstrated that finite-amplitude forcing needed to be considered to gain a complete
understanding of squeeze-film behaviour. Using a spectral collocation numerical
scheme, the bearing force was seen to be a nonlinear function of the frequency and
amplitude of the stator forcing. Extensions to high-speed bearing operation were
investigated using the modified Reynolds equation model. A numerical computation
showed that large-amplitude results were needed to fully observe the interaction
between the rotation and the stator forcing properties but the effect of high-speed
operation was a reduction in the load-carrying force.

A coupled air-flow–structure model provided a more general analysis of bearing
behaviour. The effect of the stator forcing and rotor support parameters was identified
through a numerical analysis. Results showed an effect of high-speed rotation was to
draw the rotor and stator together, a feature opposed by the squeeze-film force that
arises due to film compression. For the squeeze force to be significant, a combination
of higher-frequency and larger-amplitude stator forcing is required. The mechanical
damping and stiffness properties of the rotor support structure were seen to moderate
the rotor motion.

An investigation of resonant rotor dynamics used asymptotic and Fourier analysis
of the rotor motion for small-amplitude, low-frequency oscillations and numerical
results for finite-amplitude oscillations. Resonance appeared in the rotor motion
when the rotor stiffness took critical values for a range of operation speeds and
forcing frequencies. Changes in the minimum rotor–stator clearance were presented
as a function of the rotor stiffness to demonstrate the appearance of resonance. Non-
smooth results were analysed and shown to be related to the location of the critical
time value corresponding to the minimum clearance observed.

The authors wish to acknowledge the financial support provided by Rolls-Royce
plc, Aerospace Group as part of University Technology Centre in Gas Turbine
Transmission Systems at the University of Nottingham. The views expressed in this
paper are those of the authors and not necessarily those of Rolls-Royce plc, Aerospace
Group.

Appendix. Derivation of the modified Reynolds equation model
A dimensional analysis of the Navier–Stokes equations for compressible flow is

established with typical air pressures and densities taken to be P (bar) and ρ0 (kg m−3),
respectively. Typical radial, azimuthal and axial flow speeds are U (m s−1), V (m s−1)
and W (m s−1) and the radial variable is scaled using the bearing width R (m). The
typical film thickness when the system is operating without any disturbance is h0(m).
The stator is forced with an oscillatory motion of frequency ω (Hz), suggesting that
the time scale for the model is taken to be ω−1 (s).
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To characterize the dimensionless flow properties, the radial and azimuthal
Reynolds numbers are defined by (2.5). The Reynolds number ratio is given by
(2.6). The aspect ratio is δ0 = h0/R.

The importance of gravitational effects relative to the radial flow speed is
parameterized by the Froude number

Fr =
U√
gh0

. (A 1)

Because the rotor is rotating at a rate Ω (r.p.s.), the azimuthal velocity is scaled
using V = ΩR (m s−1). Furthermore, the rigid surface boundary condition suggests
that the axial velocity be scaled with W =h0/T = ωh0 (m s−1).

The radial component of the axisymmetric Navier–Stokes momentum equation
becomes
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the azimuthal component becomes
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, (A 2b)

and the axial component becomes
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where the squeeze number is σ = Rω/U . Similarly, the continuity equation becomes

σ
∂ρ

∂t
+

1

r

∂

∂r
(ρru) + σ

∂

∂z
(ρw) = 0. (A 3)

Typically, the operation of air-lubricated technology involves design clearances of
several microns. The radius of this configuration is usually in the range of 0.05–1 (m),
suggesting that the aspect ratio is very small δ0 � 1, which is the key requirement for
the lubrication approximation.

Using the viscous pressure scaling P =µRU/h2
0 (bar) allows the momentum

equations (A 2) to be reduced to leading order, giving the modified lubrication
equations

−λ
ρv2

r
= −∂p

∂r
+

∂2u

∂z2
, (A 4a)

0 =
∂2v

∂z2
, (A 4b)

0 =
∂p

∂z
. (A 4c)

For highly rotating flows, the inclusion of the leading-order inertia term is
parameterized by a speed parameter λ= ReUδ2

0Re∗2.
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The equation of state is given by

p = Kρ, (A 5)

with the modified gas constant K = (ρ0kbτh2
0)/(µmaRU ), where kb (J K−1) is the

Boltzmann constant, ma (kg) is the mass of air and τ (K) is the fluid temperature.
The leading-order momentum equations (A 4) are solved, and applying no-slip

conditions gives the radial and azimuthal velocities

u(r, z, t) =
1
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∂r
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(
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and

v(r, z, t) =
r

h
(z − hs) . (A 6b)

Integrating across the film thickness gives
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= 0. (A 7)

The radial velocity given by (A 6a) is integrated over the film thickness and through
substitution into the above equation yields the axisymmetric modified Reynolds
equation:
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